Question
Find exact value of \sin\dfrac{\pi}{7} \sin\dfrac{2\pi}{7} \sin\dfrac{3\pi}{7} or sin(pi/7)sin(2pi/7)sin(3pi/7)
Find exact value of \sin\dfrac{\pi}{7} \sin\dfrac{2\pi}{7} \sin\dfrac{3\pi}{7} or sin(pi/7)sin(2pi/7)sin(3pi/7)
Let
and
y = \cos\dfrac{\pi}{7} \cos\dfrac{2\pi}{7} \cos\dfrac{3\pi}{7}
Multiply x by y and apply double angle identity for sine function
xy =\dfrac{1}{8} \Big(2 \sin\dfrac{\pi}{7}\cos\dfrac{\pi}{7}\Big) \Big(2\sin\dfrac{2\pi}{7}\cos\dfrac{2\pi}{7}\Big)\Big(2 \sin\dfrac{3\pi}{7}\cos\dfrac{3\pi}{7}\Big)
=\dfrac{1}{8}\sin\dfrac{2\pi}{7}\sin\dfrac{4\pi}{7} \sin\dfrac{6\pi}{7}
=\dfrac{1}{8}\sin\dfrac{2\pi}{7}\sin\Big(\pi-\dfrac{3\pi}{7}\Big) \sin\Big(\pi-\dfrac{\pi}{7}\Big) .
=\dfrac{1}{8} \sin\dfrac{\pi}{7} \sin\dfrac{2\pi}{7} \sin\dfrac{3\pi}{7}
=\dfrac{x}{8}
Therefore,
To simplify the process, let's denote a=\cos\dfrac{\pi}{7}, b=\cos\dfrac{2\pi}{7}, and c=\cos\dfrac{3\pi}{7}. Then the equation (2) can be expressed as
Now let's square the equation (1) and apply Power-Reducing Identity for sine function. And express the derived cosine functions in terms of their supplements for two of larger angles.
x^2= \sin^2\dfrac{\pi}{7} \sin^2\dfrac{2\pi}{7} \sin^2\dfrac{3\pi}{7}
=\dfrac{1}{8}\Big(1-\cos\dfrac{2\pi}{7} \Big)\Big(1-\cos\dfrac{4\pi}{7} \Big)\Big(1-\cos\dfrac{6\pi}{7} \Big)
=\dfrac{1}{8}\Big(1-\cos\dfrac{2\pi}{7} \Big)\Big(1-\cos\Big( \pi-\dfrac{3\pi}{7}\Big) \Big)\Big(1-\cos\Big(\pi-\dfrac{\pi}{7}\Big) \Big)
=\dfrac{1}{8}\Big(1-\cos\dfrac{2\pi}{7} \Big)\Big(1-\cos\dfrac{3\pi}{7} \Big)\Big(1-\cos\dfrac{\pi}{7} \Big)
Replacing the cosine functions with our denotions gives the following equation.
x^2 = \dfrac{1}{8}(1-a)(1-b)(1-c)
Expand brackets and simplify.
8x^2 = 1+a−b+c+ac−ab−bc−abc
Apply the conclusion (3), abc = \dfrac{1}{8} . The equation is further simplified to
In this expression, if we could show that trigonometric terms (a-b-c+ac-ab-bc) is equal to zero, then we will reach the end of our evaluation. Let's start with product terms and apply the product identity for three pairs of the cosine functions.
ac-ab-bc
=\cos\dfrac{\pi}{7}\cos\dfrac{3\pi}{7}-\cos\dfrac{\pi}{7}\cos\dfrac{2\pi}{7}-\cos\dfrac{2\pi}{7}\cos\dfrac{3\pi}{7}
=\dfrac{1}{2}\Big(\cos\dfrac{4\pi}{7}+\cos\dfrac{2\pi}{7}-\cos\dfrac{3\pi}{7}-\cos\dfrac{\pi}{7}-\cos\dfrac{5\pi}{7}-\cos\dfrac{\pi}{7} \Big)
=\dfrac{1}{2}\Big(\cos\dfrac{4\pi}{7}+\cos\dfrac{2\pi}{7}-\cos\dfrac{3\pi}{7}-\cos\dfrac{5\pi}{7}-2\cos\dfrac{\pi}{7} \Big)
=\dfrac{1}{2}\Big(\cos\dfrac{4\pi}{7}-\cos\dfrac{5\pi}{7}+b-c-2a \Big)
=\dfrac{1}{2}\Big(-\cos\dfrac{3\pi}{7}+\cos\dfrac{2\pi}{7}+b-c-2a \Big)
=\dfrac{1}{2}\Big(-c+b+b-c-2a \Big)
=b-a-c
which shows a-b-c+ac-ab-bc is indeed equals to zero
Therefore, equaiton (4) is simplified to
8x^2 = \dfrac{7}{8}
Solving for x yields
x=\dfrac{\sqrt{7} }{8}
Now, the exact value of \sin\dfrac{\pi}{7} \sin\dfrac{2\pi}{7} \sin\dfrac{3\pi}{7} or sin(pi/7)sin(2pi/7)sin(3pi/7) is concluded to be equal to \dfrac{\sqrt{7} }{8}