Question
a_1=3 , a_n=2a^2_{n-1}-1 , find the value of \lim\limits_{n\to \infty}\dfrac{a_n}{2^na_1a_2\dots a_{n-1}}
a_1=3 , a_n=2a^2_{n-1}-1 , find the value of \lim\limits_{n\to \infty}\dfrac{a_n}{2^na_1a_2\dots a_{n-1}}
Let
Since a_1=3, solving the above equation gives
\alpha = 3+2\sqrt{2}
(cancel negative result since a_n>0 )
Substituting the value of prior terms in terms of \alpha the recursive formula gi
a_2=2a^2_1-1=2(\dfrac{1}{2}(\alpha +\dfrac{1}{\alpha } )^2-1
=\dfrac{1}{2}(\alpha^2 +\dfrac{1}{\alpha ^2 } )
a_3=\dfrac{1}{2}(\alpha ^4+\dfrac{1}{\alpha ^4 } )
\dots
a_n=\dfrac{1}{2}(\alpha ^{2^{n-1}}+\dfrac{1}{\alpha ^{2^{n-1}} } )
Then,
a_1\cdotp a_2\dots a_{n-1}
=\dfrac{1}{2^{n-1}}(\alpha +\dfrac{1}{\alpha })(\alpha^2 +\dfrac{1}{\alpha ^2 })\dots(\alpha ^{2^{n-2}}+\dfrac{1}{\alpha^{2^{n-2} } })
=\dfrac{1}{2^{n-1}\cdotp ( \alpha -\dfrac{1}{\alpha } )}(\alpha ^2-\dfrac{1}{\alpha ^2 }) (\alpha ^2+\dfrac{1}{\alpha^2 })\dots (\alpha ^{2^{n-2}}+\dfrac{1}{\alpha ^{2^{n-2}} } )
=\dfrac{\alpha ^{2^{n-1}}-\dfrac{1}{\alpha ^{2^{n-1}} } }{2^{n-1}\cdotp (\alpha -\dfrac{1}{\alpha } ) }
Therefore,
\lim\limits_{n\to \infty}\dfrac{a_n}{2^na_1a_2\dots a_{n-1}}
=\lim\limits_{n\to \infty}\dfrac{1}{4}\cdotp \dfrac{(\alpha -\dfrac{1}{\alpha } )a_n}{\alpha ^{2n-1}-\dfrac{1}{\alpha ^{2n-1} } }
=\lim\limits_{n\to \infty}\dfrac{1}{4}\cdotp \dfrac{(\alpha -\dfrac{1}{\alpha } )\dfrac{1}{2}(\alpha ^{2^{n-1}}+\dfrac{1}{\alpha ^{2^{n-1}} } )}{\alpha ^{2n-1}-\dfrac{1}{\alpha ^{2n-1} } }
=\dfrac{1}{4}\cdotp (\alpha -\dfrac{1}{\alpha })
=\sqrt{2}