Question
If n\in N^* such that a_1=\sqrt{2} , a_{n+1}=\sqrt{2+a_n}, show that a_n has limit and find the value of the the limit.
If n\in N^* such that a_1=\sqrt{2} , a_{n+1}=\sqrt{2+a_n}, show that a_n has limit and find the value of the the limit.
a_1=\sqrt{2}=2\cos\dfrac{\pi}{4}
a_2=\sqrt{2+a_1} =\sqrt{2+2\cos\dfrac{\pi}{4} }
\cos\dfrac{ \alpha}{2} = \sqrt{\dfrac{1+\cos \alpha }{2} }
Using the half angle identity
\cos^2\dfrac{\alpha }{2}=\dfrac{1+\cos\alpha }{2}
a_2=\sqrt{2^2\cdotp \cos^2\dfrac{\pi}{8} } =2\cos\dfrac{\pi}{8}
Similarly,
a_3=2\cos\dfrac{\pi}{16}
\dots
a_n= 2\cos\dfrac{\pi}{2^{n+1}}
\lim\limits_{n\to \infty} a_n=\lim\limits_{n\to \infty} 2\cos\dfrac{\pi}{2^{n+1}}=2
Suppose \{a_n\} has limit,
let \lim\limits_{n\to \infty} a_n=C
Then \lim\limits_{n\to \infty} a_{n+1}=C
Given the formula of the recursive sequence
a_{n+1}=\sqrt{2+a_n}
Take the limit
\lim\limits_{n\to \infty} a_{n+1}=\sqrt{2+\lim\limits_{n\to \infty} a_n}
C=\sqrt{2+C} >0
Taking the square and rearranging the terms gives
C^2-C-2=0
Solve the quadratic equation
C=2 or C=-1 (canceled )
Now we have found the sequence has a limit and it’s value is 2.