Question
Let p >2 be a prime. Prove that there exists at least one positive integer n such that n^2+np is a perfect square.
Let p >2 be a prime. Prove that there exists at least one positive integer n such that n^2+np is a perfect square.
Let m be an integer such that
n^2+np=m^2
4n^2+4np+p^2-p^2=4m^2
(2n+p)^2-(2m)^2=p^2
(2n+p-2m)(2n+p+2m)=p^2
Let a=2n+p-2m, b=2n+p+2m
Addition of the two equations gives
And
Since p is a prime number, there are only 2 pairs of divisors for p^2, (p,p), (1,p^2)
When a=b=p, n = \dfrac{p+p-2p}{4}=0
When a = 1, b=p^2,
n=\dfrac{1}{4}(1+p^2-2p)
= \dfrac{1}{4}(p-1)^2
Verify:
When p=3, n = 1
n^2+np = 1+3 = 4, m = 2
When p = 5, n = 4
n^2+np = 16+20 = 36, m = 6
When p = 7, n = 9
n^2+np = 81+9\times 7 = 144 , m = 12
n^2+np =n(n+p)
If n^2+np is perfect square, n > 2, both n and n+p are perfect squares.
Let n = a^2, n+p = b^2
p = b^2-n=b^2-a^2 = (b-a)(b+a)
Since p is a prime number, it has only two factors, 1 and itself.
Let b-a = 1, then b+a = p
a = \dfrac{p-1}{2}
Therefore
n = \dfrac{1}{4}(p-1)^2